V = 1448.1 (2) Å³

Mo $K\alpha$ radiation

2687 independent reflections

3 standard reflections

frequency: 60 min

intensity decay: 0.2%

2388 reflections with $I > 2\sigma(I)$

 $\mu = 2.04 \text{ mm}^{-1}$

T = 293 (2) K $0.40 \times 0.40 \times 0.35 \text{ mm}$

 $R_{\rm int} = 0.011$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido[N,N,N',N'-tetramethylcyclohexane-1,2-diamine- $\kappa^2 N, N'$]zinc(II)

Na Young Lee, Jong Uk Yoon and Jong Hwa Jeong*

Department of Chemistry, Kyungpook National University, Taegu 702-701, Republic of Korea

Correspondence e-mail: jeongjh@knu.ac.kr

Received 23 August 2007; accepted 31 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(N-C) = 0.012$ Å; disorder in main residue; R factor = 0.067; wR factor = 0.159; data-to-parameter ratio = 20.4.

In the title compound, $[ZnCl_2(C_{10}H_{22}N_2)]$, the Zn^{II} ion coordinates to the N atoms of tetramethylcyclohexane-1,2diamine and to two chloride ions in an approximately tetrahedral arrangement. The N-Zn-N and Cl-Zn-Cl planes are approximately orthogonal, with a dihedral angle of $89.7 (2)^{\circ}$ between them. Four C atoms of the cyclohexane ring, together with their attached H atoms, are disordered equally over two sites.

Related literature

For the use of tetramethylcyclohexane-1,2-diamine in asymmetric addition, see: Cabello et al. (2005); Kizirian et al. (2005). For related structures, see: Roh et al. (2004); Pavlova et al. (2003).

Me Me Me Me CI CI

Experimental

Crystal data

$[\text{ZnCl}_2(\text{C}_{10}\text{H}_{22}\text{N}_2)]$ $M_r = 306.59$	
Monoclinic, $P2_1/n$	
a = 8.2566 (6) Å	
b = 14.1915 (13) Å	
c = 12.9584 (9) Å	
$\beta = 107.504 \ (6)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 four-circle diffractometer Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999) $T_{\min} = 0.46, \ T_{\max} = 0.49$ 2918 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ 132 parameters $wR(F^2) = 0.159$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^-$ S = 1.27 $\Delta \rho_{\rm min} = -0.49$ e Å⁻³ 2687 reflections

Table 1 Selected geometric parameters (Å, °).

Zn-N2	2.073 (7)	Zn-Cl2	2.199 (2)
Zn-N1	2.086 (6)	Zn-Cl1	2.219 (2)
N2-Zn-N1	87.1 (2)	N2-Zn-Cl1	110.38 (19)
N2-Zn-Cl2	114.97 (19)	N1-Zn-Cl1	109.88 (18)
N1-Zn-Cl2	115.24 (18)	Cl2-Zn-Cl1	115.83 (10)

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEXIII (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2341).

References

Cabello, N., Kizirian, J.-C., Gille, S., Alexakis, A., Bernardinelli, G., Pinchard, L. & Caille, J.-C. (2005). Eur. J. Org. Chem. 22, 4835-4842.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Kizirian, J.-C., Cabello, N., Pinchard, L., Caille, J.-C. & Alexakis, A. (2005). Tetrahedron, 61, 8939-8946.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.

McArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland. McArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.

Pavlova, S. V., Wen, Y.-S. & Chan, S. I. (2003). Acta Cryst. E59, m792-m793.

Roh, S. G., Yoon, J. U. & Jeong, J. H. (2004). Polyhedron, 23, 2063-2067.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2471 [doi:10.1107/81600536807042675]

Dichlorido[*N*,*N*,*N*',*N*'-tetramethylcyclohexane-1,2-diamine- $\kappa^2 N$,*N*']zinc(II)

N. Y. Lee, J. U. Yoon and J. H. Jeong

Comment

Chiral *N*,*N*,*N*',*N*'-tetramethylcycloheane-1,2-diamine has been used as enantioselective additive for the asymmetric addition of aryl or alkyl lithium to pro-chiral imines (Cabello *et al.*, 2005; Kizirian *et al.*, 2005). Crystal structures of zinc complexes containing non-macrocyclic cyclohexane- 1,2-diamine as ligand are very rare (Roh *et al.*, 2004). Herein, we report the crystal structure of the Zn^{II} complex bearing *N*,*N*,*N*',*N*'-tetramethylcycloheane-1,2-diamine and two chloride anions. The geometry around Zn^{II} is a near tetrahedron while the Cu(II) complex bearing the same ligand has a distorted square-planar geometry (Pavlova *et al.*, 2003). The angles between N—Zn—N and Cl—Zn—Cl planes are 89.7 (2)°.

Experimental

To a solution of ZnCl₂ (0.084 g, 0.61 mmol) in THF (10 ml) was added dropwise a solution of *trans*-(1*R*,2*R*)-*N*,*N*,*N'*,*N'*-tetramethylcycloheane-1,2-diamine (0.93 g, 0.61 mmol) in THF (10 ml). The mixture was stirred for 2 days at room temperature. The solvent was removed and the residue was washed with ether to give a white solid. Colorless crystals was obtained from methanol solution. Yield; 1.40 g (75%). Anal. Calcd. for $C_{10}H_{22}Cl_2N_2Zn$: C, 39.18; H, 7.23; N, 9.14. Found: C, 39.15; H, 7.24; N, 9.10%. ¹H NMR (CDCl₃); δ 2.45(m, 4H, CHDA), 2.08(m, 2H, CHDA), 1.86(m, 2H, CHDA), 1.25(m, 1H, CHDA), 1.13(m, 1H, CHDA). 2.27(s, 12H, CH₃).

Refinement

The C3, C5, C6 and C8 carbon atoms of the cyclohexane ring are disordered over two positions. They were refined isotropically at half occupancies. All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.98 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH, 0.97 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ and 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms.

Figures

Fig. 1. A view of Dichloro[*trans*-(1*R*,2*R*)-*N*,*N*,*N*',*N*'-tetramethylcyclohexane- 1,2-diamine- $\kappa^2 N \cdot N'$]zinc(II). Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms at methyl groups are omitted for clarity.

Dichlorido[N, N, N', N'-tetramethylcyclohexane-1,2-diamine- $\kappa^2 N, N'$]zinc(II)

 $F_{000} = 640$

 $D_{\rm x} = 1.406 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 25 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 9.2 - 13.3^{\circ}$

 $\mu = 2.04 \text{ mm}^{-1}$

T = 293 (2) K

Block, colorless

 $0.40 \times 0.40 \times 0.35 \text{ mm}$

Crystal data

 $[ZnCl_2(C_{10}H_{22}N_2)]$ $M_r = 306.59$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.2566 (6) Å b = 14.1915 (13) Å c = 12.9584 (9) Å $\beta = 107.504 (6)^\circ$ $V = 1448.1 (2) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4 four-circle diffractometer	$R_{\rm int} = 0.011$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 293(2) K	$h = -9 \rightarrow 9$
scintillation counter scans	$k = -17 \rightarrow 0$
Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999)	$l = 0 \rightarrow 15$
$T_{\min} = 0.46, \ T_{\max} = 0.49$	3 standard reflections
2918 measured reflections	every 60 min
2687 independent reflections	intensity decay: 0.2%
2388 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0001P)^2 + 8.9534P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.28	$(\Delta/\sigma)_{\rm max} < 0.001$
2687 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
132 parameters	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

sup-2

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn	0.24797 (10)	0.14548 (6)	0.43395 (6)	0.0467 (3)	
Cl1	0.2396 (3)	0.07751 (16)	0.58652 (15)	0.0690 (6)	
Cl2	0.4590 (3)	0.24418 (18)	0.4487 (2)	0.0833 (8)	
N1	0.0079 (7)	0.1968 (4)	0.3495 (5)	0.0476 (14)	
N2	0.2142 (8)	0.0459 (5)	0.3122 (5)	0.0562 (16)	
C1	-0.0956 (11)	0.2038 (8)	0.4228 (8)	0.089 (3)	
H1A	-0.0499	0.2517	0.4759	0.106*	
H1B	-0.0949	0.1444	0.4585	0.106*	
H1C	-0.2101	0.2198	0.3824	0.106*	
C2	0.0250 (13)	0.2904 (6)	0.3069 (10)	0.099 (4)	
H2A	0.1000	0.2872	0.2630	0.119*	
H2B	0.0708	0.3332	0.3659	0.119*	
H2C	-0.0845	0.3124	0.2639	0.119*	
C3	-0.0397 (18)	0.1419 (11)	0.2458 (12)	0.049 (3)*	0.50
Н3	0.0088	0.1744	0.1952	0.059*	0.50
C3'	-0.0814 (17)	0.1143 (10)	0.2794 (11)	0.040 (3)*	0.50
H3'	-0.1085	0.0666	0.3263	0.048*	0.50
C4	-0.2412 (9)	0.1412 (6)	0.1940 (7)	0.067 (2)	
H4A	-0.2954	0.1121	0.2428	0.080*	
H4B	-0.2846	0.2047	0.1779	0.080*	
C5	-0.273 (3)	0.0825 (16)	0.0888 (18)	0.087 (6)*	0.50
H5A	-0.3913	0.0641	0.0708	0.105*	0.50
H5B	-0.2676	0.1282	0.0343	0.105*	0.50
C5'	-0.330 (2)	0.0612 (12)	0.1266 (14)	0.060 (4)*	0.50
H5C	-0.3988	0.0852	0.0572	0.072*	0.50
H5D	-0.4062	0.0322	0.1617	0.072*	0.50
C6	-0.211 (3)	0.0220 (16)	0.0704 (17)	0.073 (5)*	0.50
H6A	-0.1929	0.0326	0.0007	0.088*	0.50
H6B	-0.2887	-0.0307	0.0617	0.088*	0.50
C6'	-0.204 (3)	-0.0172 (17)	0.1069 (19)	0.087 (6)*	0.50
H6C	-0.2395	-0.0770	0.1295	0.104*	0.50
H6D	-0.2240	-0.0213	0.0293	0.104*	0.50
C7	-0.0311 (12)	-0.0100 (7)	0.1544 (7)	0.075 (3)	
H7A	-0.0397	-0.0760	0.1715	0.090*	
H7B	0.0549	-0.0052	0.1175	0.090*	
C8	0.033 (2)	0.0454 (12)	0.2630 (14)	0.053 (4)*	0.50
H8	-0.0157	0.0142	0.3142	0.064*	0.50
C8'	0.0396 (18)	0.0717 (11)	0.2248 (13)	0.045 (3)*	0.50
H8'	0.0642	0.1207	0.1783	0.054*	0.50
C9	0.3344 (12)	0.0601 (9)	0.2507 (8)	0.099 (4)	
H9A	0.3239	0.0095	0.2000	0.118*	
H9B	0.4480	0.0613	0.2994	0.118*	
H9C	0.3104	0.1189	0.2124	0.118*	
C10	0.2425 (18)	-0.0485 (7)	0.3608 (10)	0.117 (5)	
H10A	0.1814	-0.0942	0.3089	0.140*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H10B	0.2029	-0.0502	0.4233	0.140*
H10C	0.3616	-0.0629	0.3819	0.140*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0422 (4)	0.0500 (5)	0.0456 (5)	-0.0030 (4)	0.0101 (3)	0.0028 (4)
Cl1	0.0779 (14)	0.0781 (14)	0.0414 (10)	-0.0194 (11)	0.0034 (9)	0.0103 (9)
Cl2	0.0577 (13)	0.0751 (15)	0.119 (2)	-0.0192 (11)	0.0298 (13)	0.0030 (14)
N1	0.044 (3)	0.046 (3)	0.048 (3)	0.006 (3)	0.007 (3)	0.002 (3)
N2	0.053 (4)	0.065 (4)	0.057 (4)	0.010 (3)	0.026 (3)	0.003 (3)
C1	0.061 (6)	0.135 (10)	0.076 (6)	0.025 (6)	0.029 (5)	0.009 (6)
C2	0.090 (7)	0.059 (6)	0.138 (10)	0.012 (5)	0.016 (7)	0.047 (6)
C4	0.048 (4)	0.069 (5)	0.069 (5)	0.006 (4)	-0.004 (4)	0.010 (5)
C7	0.087 (7)	0.075 (6)	0.059 (5)	-0.015 (5)	0.018 (5)	-0.022 (5)
C9	0.074 (6)	0.153 (11)	0.083 (7)	-0.005 (7)	0.046 (6)	-0.028 (7)
C10	0.205 (15)	0.053 (6)	0.103 (9)	0.016 (8)	0.062 (9)	-0.003 (6)

Geometric parameters (Å, °)

Zn—N2	2.073 (7)	C4—H4A	0.9700
Zn—N1	2.086 (6)	C4—H4B	0.9700
Zn—Cl2	2.199 (2)	C5—C6	1.06 (2)
Zn—Cl1	2.219 (2)	C5—H5A	0.9700
N1—C1	1.461 (10)	C5—H5B	0.9700
N1—C2	1.462 (10)	C5'—C6'	1.59 (3)
N1—C3	1.500 (15)	C5'—H5C	0.9700
N1—C3'	1.528 (14)	C5'—H5D	0.9700
N2—C8	1.438 (16)	C6—C7	1.62 (2)
N2—C9	1.462 (10)	C6—H6A	0.9700
N2—C10	1.468 (11)	C6—H6B	0.9700
N2—C8'	1.585 (16)	C6'—C7	1.38 (2)
C1—H1A	0.9600	С6'—Н6С	0.9700
C1—H1B	0.9600	C6'—H6D	0.9700
C1—H1C	0.9600	C7—C8'	1.482 (16)
C2—H2A	0.9600	C7—C8	1.559 (17)
C2—H2B	0.9600	C7—H7A	0.9700
C2—H2C	0.9600	С7—Н7В	0.9700
C3—C8	1.49 (2)	C8—H8	0.9800
C3—C4	1.596 (16)	C8'—H8'	0.9800
С3—Н3	0.9800	С9—Н9А	0.9600
C3'—C4	1.494 (14)	С9—Н9В	0.9600
C3'—C8'	1.513 (19)	С9—Н9С	0.9600
C3'—H3'	0.9800	C10—H10A	0.9600
C4—C5'	1.485 (18)	C10—H10B	0.9600
C4—C5	1.55 (2)	C10—H10C	0.9600
N2—Zn—N1	87.1 (2)	H4A—C4—H4B	108.9
N2—Zn—Cl2	114.97 (19)	C6—C5—C4	132 (2)

N1—Zn—Cl2	115.24 (18)	С6—С5—Н5А	104.3
N2—Zn—Cl1	110.38 (19)	С4—С5—Н5А	104.3
N1—Zn—Cl1	109.88 (18)	С6—С5—Н5В	104.3
Cl2—Zn—Cl1	115.83 (10)	C4—C5—H5B	104.3
C1—N1—C2	109.0 (8)	H5A—C5—H5B	105.6
C1—N1—C3	124.9 (9)	C4—C5'—C6'	113.4 (14)
C2—N1—C3	99.4 (9)	C4—C5'—H5C	108.9
C1—N1—C3'	99.6 (8)	C6'—C5'—H5C	108.9
C2—N1—C3'	123.8 (8)	C4—C5'—H5D	108.9
C3—N1—C3'	28.4 (6)	C6'—C5'—H5D	108.9
C1—N1—Zn	109.4 (5)	H5C—C5'—H5D	107.7
C2—N1—Zn	109.3 (5)	C5—C6—C7	119 (2)
C3—N1—Zn	103.9 (6)	С5—С6—Н6А	107.6
C3'—N1—Zn	104.9 (6)	С7—С6—Н6А	107.6
C8—N2—C9	123.0 (10)	С5—С6—Н6В	107.6
C8—N2—C10	101.3 (10)	С7—С6—Н6В	107.6
C9—N2—C10	108.2 (8)	H6A—C6—H6B	107.0
C8—N2—C8'	23.6 (7)	C7—C6'—C5'	120.9 (17)
C9—N2—C8'	101.5 (8)	С7—С6'—Н6С	107.1
C10—N2—C8'	120.7 (9)	С5'—С6'—Н6С	107.1
C8—N2—Zn	103.0 (7)	С7—С6'—Н6D	107.1
C9—N2—Zn	111.2 (6)	C5'—C6'—H6D	107.1
C10—N2—Zn	109.2 (6)	H6C—C6'—H6D	106.8
C8'—N2—Zn	105.7 (6)	C6'—C7—C8'	119.7 (13)
N1—C1—H1A	109.5	C6'—C7—C8	117.7 (13)
N1—C1—H1B	109.5	C8'—C7—C8	23.9 (7)
H1A—C1—H1B	109.5	C6'—C7—C6	26.3 (11)
N1—C1—H1C	109.5	C8'—C7—C6	107.8 (11)
H1A—C1—H1C	109.5	C8—C7—C6	117.4 (11)
H1B—C1—H1C	109.5	Сб'—С7—Н7А	83.8
N1—C2—H2A	109.5	C8'—C7—H7A	131.0
N1—C2—H2B	109.5	С8—С7—Н7А	108.0
H2A—C2—H2B	109.5	С6—С7—Н7А	108.0
N1—C2—H2C	109.5	Сб'—С7—Н7В	126.8
H2A—C2—H2C	109.5	C8'—C7—H7B	92.1
H2B—C2—H2C	109.5	С8—С7—Н7В	108.0
C8—C3—N1	111.0 (12)	С6—С7—Н7В	108.0
C8—C3—C4	112.4 (12)	H7A—C7—H7B	107.2
N1—C3—C4	109.8 (10)	N2—C8—C3	112.5 (13)
C8—C3—H3	107.8	N2—C8—C7	115.4 (11)
N1—C3—H3	107.8	C3—C8—C7	108.5 (13)
C4—C3—H3	107.8	N2—C8—H8	106.7
C4—C3'—C8'	108.4 (11)	С3—С8—Н8	106.7
C4—C3'—N1	113.9 (10)	С7—С8—Н8	106.7
C8'—C3'—N1	108.4 (10)	C7—C8'—C3'	114.1 (12)
C4—C3'—H3'	108.7	C7—C8'—N2	111.3 (11)
C8'—C3'—H3'	108.7	C3'—C8'—N2	110.2 (11)
N1—C3'—H3'	108.7	С7—С8'—Н8'	107.0
C5'—C4—C3'	114.3 (10)	C3'—C8'—H8'	107.0

supplementary materials

C5'—C4—C5	31.8 (9)	N2—C8'—H8'	107.0
C3'—C4—C5	113.1 (11)	N2—C9—H9A	109.5
C5'—C4—C3	121.4 (10)	N2—C9—H9B	109.5
C3'—C4—C3	27.6 (6)	Н9А—С9—Н9В	109.5
C5—C4—C3	104.6 (11)	N2—C9—H9C	109.5
C5'—C4—H4A	79.3	Н9А—С9—Н9С	109.5
C3'—C4—H4A	83.5	Н9В—С9—Н9С	109.5
C5—C4—H4A	110.8	N2	109.5
C3—C4—H4A	110.8	N2	109.5
C5'—C4—H4B	119.9	H10A-C10-H10B	109.5
C3'—C4—H4B	125.7	N2-C10-H10C	109.5
C5—C4—H4B	110.8	H10A-C10-H10C	109.5
C3—C4—H4B	110.8	H10B-C10-H10C	109.5
N2—Zn—N1—C1	128.6 (6)	N1—C3—C4—C5	-179.8 (12)
Cl2—Zn—N1—C1	-115.1 (6)	C5'—C4—C5—C6	-90 (4)
Cl1—Zn—N1—C1	17.9 (6)	C3'—C4—C5—C6	9(4)
N2—Zn—N1—C2	-112.2 (6)	C3—C4—C5—C6	37 (3)
Cl2—Zn—N1—C2	4.1 (7)	C3'—C4—C5'—C6'	-33.8 (19)
Cl1—Zn—N1—C2	137.2 (6)	C5—C4—C5'—C6'	61 (2)
N2—Zn—N1—C3	-6.8 (8)	C3—C4—C5'—C6'	-4(2)
Cl2—Zn—N1—C3	109.5 (7)	C4—C5—C6—C7	-12 (4)
Cl1—Zn—N1—C3	-117.4 (7)	C4—C5'—C6'—C7	3(3)
N2—Zn—N1—C3'	22.5 (7)	C5'—C6'—C7—C8'	0(3)
Cl2—Zn—N1—C3'	138.8 (6)	C5'—C6'—C7—C8	27 (3)
Cl1— Zn — $N1$ — $C3'$	-88.2(7)	C5'—C6'—C7—C6	-69 (3)
N1— Zn — $N2$ — $C8$	-19.6(9)	C5—C6—C7—C6'	103 (4)
Cl_2 Zn_N^2 $C8$	-136.2(8)	C5—C6—C7—C8'	-19(3)
Cl1— Zn — $N2$ — $C8$	90.5 (8)	C5—C6—C7—C8	5(3)
N1 - Zn - N2 - C9	113 9 (6)	C9 - N2 - C8 - C3	-82.1(16)
Cl_2 Zn_N^2 Cg_2	-2.6(7)	C10-N2-C8-C3	157.2 (13)
Cl1— Zn — $N2$ — $C9$	-1359(6)	C8' - N2 - C8 - C3	-55 (2)
N1 - Zn - N2 - C10	-1267(7)	$Z_n - N_2 - C_8 - C_3$	44.3(15)
Cl_{2} $Zn_{N_{2}}$ Cl_{0}	116.8 (7)	C9 - N2 - C8 - C7	43 1 (18)
$C_{11} - Z_{11} - N_{2} - C_{10}$	-165(7)	C10-N2-C8-C7	-77.6(14)
N1 - 7n - N2 - C8'	46(7)	C8' - N2 - C8 - C7	70 (2)
Cl_{2} N_{2} Cl_{3} N_{2} Cl_{3}	-1120(7)	$Z_{n} = N^{2} = C^{8} = C^{7}$	1694(10)
C_{11} Z_{11} N_{2} C_{8}	112.0(7)	N1 - C3 - C8 - N2	-55.0(18)
C1 - N1 - C3 - C8	-93.7(14)	C4-C3-C8-N2	-1784(10)
$C_{1} = N_{1} = C_{3} = C_{8}$	145.1(12)	N1 - C3 - C8 - C7	176.1 (10)
$C_2 = N_1 = C_3 = C_8$	-63.3(17)	$C_{4} = C_{3} = C_{8} = C_{7}$	52.7(17)
7n - N1 - C3 - C8	32.4(14)	$C_{+-}C_{-}C_{8-}N_{2}$	176 A (15)
C1 - N1 - C3 - C4	31.2(15)	C0 - C7 - C0 - N2	-82(2)
C_{1}^{2} N1 C_{3}^{2} C4	-89.9(11)	C6 - C7 - C8 - N2	-153.9(13)
$C_{2} = N_{1} = C_{3} = C_{4}$	61.7 (16)	C6' = C7 = C8 = C3	-56(2)
7n - N1 - C3 - C4	157 3 (8)	$C_{0} = C_{1} = C_{0} = C_{3}$	30(2)
$C1_N1_C3'_C4$	79.6 (11)	$C_{6} = C_{7} = C_{8} = C_{3}$	-267(10)
$C_{1}^{2} = N_{1}^{2} = C_{1}^{2}$	-41 1 (14)	$C_{0}^{(-)} = C_{0}^{(-)} = C_{0}^{(-)} = C_{0}^{(-)}$	20.7 (17)
$C_2 = N_1 - C_3 - C_4$	-75.5(18)	$C_{0}^{2} = C_{1}^{2} = C_{0}^{2} = C_{0}^{2}$	-65(2)
C_{3} N1 C2 C4	-1672(8)	$C_{0} - C_{1} - C_{0} - C_{3}$	53.0(17)
ZII—INI—U3—U4	107.2 (0)	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	55.0(17)

C1—N1—C3'—C8'	-159.6 (11)	C6'—C7—C8'—N2	152.6 (15)
C2—N1—C3'—C8'	79.7 (13)	C8—C7—C8'—N2	61 (2)
C3—N1—C3'—C8'	45.4 (16)	C6—C7—C8'—N2	178.4 (11)
Zn—N1—C3'—C8'	-46.4 (12)	C4—C3'—C8'—C7	-56.2 (16)
C8'—C3'—C4—C5'	60.1 (15)	N1—C3'—C8'—C7	179.6 (10)
N1—C3'—C4—C5'	-179.1 (11)	C4—C3'—C8'—N2	177.7 (10)
C8'—C3'—C4—C5	25.3 (17)	N1—C3'—C8'—N2	53.6 (14)
N1—C3'—C4—C5	146.2 (12)	C8—N2—C8'—C7	-73 (2)
C8'—C3'—C4—C3	-51.7 (16)	C9—N2—C8'—C7	84.1 (12)
N1—C3'—C4—C3	69.2 (17)	C10—N2—C8'—C7	-35.4 (15)
C8—C3—C4—C5'	-26.1 (19)	Zn—N2—C8'—C7	-159.7 (9)
N1—C3—C4—C5'	-150.3 (12)	C8—N2—C8'—C3'	54 (2)
C8—C3—C4—C3'	56.5 (17)	C9—N2—C8'—C3'	-148.3 (12)
N1—C3—C4—C3'	-67.6 (16)	C10—N2—C8'—C3'	92.2 (13)
C8—C3—C4—C5	-55.6 (17)	Zn—N2—C8'—C3'	-32.2 (13)

